Neue Studie: Wälder beeinflussen den Quecksilber-Kreislauf

Pflanzen und ihre Blätter sind vermutlich maßgeblich daran beteiligt, dass menschengemachte Emissionen des schädlichen Quecksilbers abgefangen werden – das zeigt eine neue Studie in der Fachzeitschrift Nature Geoscience, an der Wissenschaftler des Helmholtz-Zentrums Geesthacht (HZG) beteiligt sind.

Quecksilber (rot) folgt saisonalen CO2-Schwankungen (blau) in Birkenes (Norwegen). Dieser Effekt ist nicht auf Amsterdam im Indischen Ozean zu beobachten. Ergo: Quecksilberaufnahme in den Blättern ist ein wichtiger Faktor für die Atmosphäre. (Foto: HZG)

Das internationale Team aus Forschenden des Centre National de la Recherche Scientifique (CNRS), des HZG und weiteren Forschungseinrichtungen veröffentlichte die Studie jetzt in der Fachzeitschrift Nature Geoscience. Die Studie zeigt, dass der atmosphärische Schadstoff Quecksilber eine ähnliche Saisonabhängigkeit aufweist wie das Treibhausgas Kohlendioxid (CO2). Die atmosphärischen CO2-Werte schwanken saisonal, da die Vegetation das Gas durch die Blätter aufnimmt, um Biomasse zu produzieren.

Wissenschaftler vergleichen 50 Überwachungsstationen

Folglich ist der CO2-Gehalt im Sommer niedriger als im Winter. Die Forschung zeigt nun, dass die Aufnahme von Quecksilber durch die Vegetation auf globaler Ebene enorm wichtig ist. Die Wissenschaftler haben die Werte von 50 bewaldeten, marinen und städtischen Überwachungsstationen verglichen. „Wir schätzen, dass die Vegetation jährlich die Hälfte aller weltweiten anthropogenen Quecksilberemissionen vorübergehend einlagern kann“, erklärt Co-Autor Dr. Ralf Ebinghaus, Umweltchemiker am HZG. Dr. Johannes Bieser, Umweltwissenschaftler am HZG und ebenfalls Autor ergänzt: „Mit dieser Veröffentlichung ist jetzt ein Prozess in den Fokus gerückt, der vorher unterschätzt wurde.“

Blätter nehmen Quecksilber aus der Atmosphäre auf

Jedes Jahr werden durch industrielle Aktivitäten zwischen zwei- und dreitausend Tonnen Quecksilber in die Atmosphäre emittiert. Mit einer langen atmosphärischen Lebensdauer von etwa sechs Monaten verbreiten sich die Quecksilberemissionen über den Globus. Was in die Atmosphäre steigt, muss letztendlich wieder herabsinken – das gilt auch für Quecksilber. Es wurde lange angenommen, dass das atmosphärische Quecksilber hauptsächlich durch Regen und Schneefall in den Boden gelangt. Neuere experimentelle Feld- und Modellierungsstudien legen jedoch nahe, dass Pflanzenblätter direkt gasförmiges elementares Quecksilber aus der Atmosphäre aufnehmen. Im Herbst wird das Quecksilber in den Pflanzen durch den Abbau der Blätter in das darunterliegende Bodensystem übertragen.

Im Winter sind die Werte höher

Die Bedeutung dieses alternativen Ablagerungsweges auf globaler Ebene wurde jedoch nie vollständig erfasst. Unter der Federführung der Erstautoren Martin Jiskra und Jeroen Sonke vom Labor von Géosciences Environnement Toulouse am CNRS hat sich ein Team aus Wissenschaftlern zusammengetan, die den atmosphärischen Quecksilber- und CO2-Gehalt weltweit messen. Von Kohlenstoffdioxid wissen wir, dass es saisonal abhängig ist und sein Konzentrationsminimum im Spätsommer, am Ende der Vegetation und der Blattwachstumssaison hat. Dementsprechend sind die Werte im Winter höher. Zu ihrer Überraschung stellten die Forscher fest, dass Quecksilber und CO2 an fünf bewaldeten Messstationen in der nördlichen Hemisphäre ähnliche saisonale Schwankungen aufweisen (siehe Abbildung). Die Ergebnisse legen auch nahe, dass der dokumentierte Anstieg der globalen Primärproduktion von Biomasse um 30 Prozent im Laufe des 20. Jahrhunderts wahrscheinlich die Aufnahme von atmosphärischem Quecksilber erhöht und dadurch die zunehmenden Quecksilberemissionen praktisch ausgeglichen hat.

Eine Gefahr für die gesamte Nahrungskette

Obwohl die Blätter durch die Aufnahme des Quecksilbers dieses aus der Luft entfernen, wird im Herbst das „zwischengelagerte“ Quecksilber in den Boden übertragen. Das Bodenquecksilber fließt schließlich in aquatische Ökosysteme, einschließlich Seen und Ozeane, wo sich das Quecksilber in Fischen ansammelt und eine Gefahr für diese darstellt. „Das ist natürlich nicht nur eine Gefahr für die Lebewesen im Meer – sondern für die gesamte Nahrungskette“, sagt Dr. Ebinghaus. (idw)

Partner