Warum sich Bäume Gene "ausborgen"

Eine Arbeitsgruppe um Christian Lexer von der Universität Wien konnte gemeinsam mit kanadischen Wissenschafter anhand von Pappelarten nachweisen, dass adaptive Genvarianten auch von Genaustausch mit verwandten Arten stammen können. Die Ergebnisse sind kürzlich in hochkarätigen Fachjournalen erschienen und werden am zweiten Internationalen Weltkongress für Evolutionsbiologie in Montpellier diskutiert.

Westliche Balsampappeln am Ufer eines Flusses in British Columbia, Canada. (Foto: Christian Lexer)

Pappel-Auwald in Mitteleuropa (Lombardei). (Foto: Dorothea Lindtke)

Die Fähigkeit zur Anpassung an sich rasch ändernde Umweltbedingungen ist überlebenswichtig für alle Tier- und Pflanzenarten, auch für den Menschen. So werden im Lauf von Generationen Gene oder ganze Chromosomenblöcke auf natürliche Weise zwischen verwandten Arten ausgetauscht. Dieser Vorgang ist an sich nicht selten und bereits von vielen Tier- und Pflanzenarten bekannt – sogar unsere eigenen Homo sapiens Vorfahren kreuzten sich mit Neandertalern.

Die Forscher entschieden sich für die Pappel als Modellsystem

Die Herausforderung für Evolutionsbiologen besteht darin, nachzuweisen dass die neu eingebrachten ("introgressierten") Genvarianten tatsächlich adaptiv sind. Ein solcher Nachweis erfordert vier verschiedene Beweisspuren: Introgression, molekularer "Fußabdruck" natürlicher Selektion in den betroffenen Gensequenzen, messbare Effekte der eingebrachten Genvarianten auf funktionelle Merkmale, Effekte dieser Merkmale auf die biologische "Fitness", d.h. auf Überleben, Gedeihen, und Fortpflanzungserfolg. Dem internationalen Forschungsteam des Departments für Botanik und Biodiversitätsforschung der Universität Wien und UBC gelang es, diese Beweiskette bei nahe verwandten nordamerikanischen Arten der "Modellbaumgattung" Populus (Pappeln) zu erbringen. Die Wissenschafter entschieden sich für Pappeln als Modellsystem für ihre Studien, da es für sie qualitativ hochwertige Genomsequenzen und –karten gibt (ähnlich wie beim Menschen), da Pappelarten häufig "hybridisieren", und da sie (noch) in großen natürlichen Populationen auf mehreren Kontinenten vorkommen. Eine wichtige Motivation des Teams lag auch in der enormen ökologischen Bedeutung adaptiver genetischer Variation bei Waldbäumen: Sie sind Schlüssel- oder "Schirmarten" in Wäldern, weshalb die genetische Vielfalt bei Bäumen enorme Auswirkungen auf ganze Lebensgemeinschaften, Ökosysteme, und Nährstoffkreisläufe hat.

Pappeln können sich Genvarianten "ausborgen"

Um die Beweiskette für adaptiven Genaustausch zu erbringen, sequenzierten die WissenschafterInnen ganze Genome von hunderten Pappeln, ermittelten introgressierte Chromosomenblöcke und Gene mit Hilfe neuester bioinformatischer Verfahren, maßen die Effekte der eingebrachten Genvarianten auf dutzende Merkmale mit Fitness-Relevanz, und untersuchten deren Zusammenhang mit ökologischen Standortfaktoren wie Temperatur und Tageslänge. Die Ergebnisse unterstützen klar die Hypothese der adaptiven Introgression bei Bäumen am Beispiel der westlichen Balsampappel Populus trichocarpa – Hybridisierende Baumarten wie Pappeln können sich also adaptive, ökologisch wichtige Genvarianten quasi von verwandten Arten "ausborgen". Eine spannende, offene Frage ist nun, wie oft adaptive Introgression auch bei anderen Baumarten oder generell in der Natur geschieht. Gerade bei langlebigen Organismen wie bei Bäumen ist die so gewonnene adaptive Vielfalt potentiell eine Chance für den Fortbestand von Arten angesichts globaler Umweltveränderungen wie dem Klimawandel.(idw)

Partner